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Abstract
A poly-reference least-square method for modal parameter identi-
fication of a system in frequency-domain is discussed and imple-
mented. It can also be considered as a multi-reference frequen-
cy-domain implementation of the recognized time-domain based 
Least-Squares Complex Exponential (LSCE) estimator.  The main 
advantages of the Poly-reference Least-Squares Complex Frequen-
cy-domain estimator (p-LSCF) are its capabilities of handling high 
system orders and high modal density. The stability diagram is much 
cleaner which makes the selection of system poles easier. Other 
advantages are lower computational times and the ability to handle 
multiple references. The Poly-X is Crystal Instruments’ version of 
p-LSCF, which is included in the EDM Modal software package. A 
MIMO FRF experimental test is carried out to demonstrate these 
advantages.

1. Introduction
Modal testing is usually performed to experimentally determine a dy-
namic system’s modal characteristics. The results from modal tests 
are used to validate and improve FEA models, troubleshoot vibra-

tion and noise issues, and to study structural dynamics. 

The rapid development of modal parameter estimation methods 
over the past few decades has not only increased the accuracy of 
modal parameter estimation but has also reduced the computational 
efforts. For modal parameter estimation, pole identification is the 
most critical part because poles contain useful information of vibra-
tion modes, such as natural frequencies and damping ratios. This 
report summarizes previous research on the least-square method 
for modal parameter identification in the frequency domain and fo-
cuses on pole identification.  A test case is conducted to verify the 
implementation results of the p-LSCF method.

2. Implementation of Poly-X
Poly-X, the Poly-reference least-squares complex frequency-do-
main estimator (p-LSCF) is a poly-reference implementation of the 
LSCF estimator [1] and was first introduced in the [3]. One or more 
references can be handled by the p-LSCF method. When using one 
reference, the result is the same as the LSCF method. A simplified 
derivation is summarized here for implementation. Please refer to 
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the original paper for a detailed derivation.

The relationship between the response (output) and excitation (in-
put) in the frequency domain is modeled through the right matrix-
fraction description (RMFD):

where Hˆ o(ω) is the model of measured FRF Ho(ω) ∈  CNf ×Ni .

For output o = 1, 2, ..., No,

where N_o (ω)∈C^(N_f×N_i )   is the numerator polynomial of order 
n and

where D(ω)∈CNi×Ni                 is the denominator polynomial of order n. 
The polynomial basis function Ωj(ω) is usually given by Ωj(ω)=(e-iω)
j in the discrete-time domain. The Boj and Aj are coefficient matrix of 
polynomials which are the parameters to be estimated. Group these 
coefficients as θ = [βT

1,…,βT
No,αT]T with

The coefficient matrix is estimated by minimizing the cost function:

By approximating the nonlinear least-square problem by a linear 
least-squares problem, the following cost function is obtained:

with

where

     represents Kronecker product and                                           
represents the weight applied on measured data.

To get the minimum cost function, both partial derivatives of Equa-
tion (2.7) with respect to β and α need to be zero.

Solve the above two equations simultaneously:

Then calculate the coefficient matrix α by solving the least-square 
problem A • X = B from Equation (2.15):

The least-square solution of α is given by                  , where                                                                                                                                       
is N_i×N_i     identity matrix. The reason to use the identity matrix 
is to constrain the highest order term of denominator polynomial as 
explained in [2]. Other methods for solving coefficient matrix and a 
detailed discussion on the effects of real and complex valued coef-
ficient matrix are found in [5]. Note that on the demand of pole iden-
tification, only coefficients of denominator (α) are interested. Poles 
can be determined from the eigenvalue problem as introduced in [4]:

where the eigenvalue matrix Λ contains the discrete-time poles 
z = e-sT

s       on its  diagonal. Then transfer poles from z-domain to 
s-domain by s=-1/T_s  . Natural frequency and damping ratio can 
be extracted by

Note: Poles with positive real parts are unstable poles, which can be 
eliminated before generating the stability diagram.
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3. Experimental Test Case

In order to compare the performance of Poly-X (p-LSCF) and a typi-
cal time domain method (PTD), a modal shaker test is carried out on 
a rectangular (8” x 4”) plexiglass board (Figure 3.1). The plexiglass 
board is modeled with thirty-two 1” x 1” grids and has 45 measure-
ment points in total. It is suspended from an elastic band which en-
sures a free-free boundary condition. The MIMO modal shaker test 
with roving response method is used in this experiment. One modal 
shaker with an impedance head is mounted on the No. 12 node and 
the other is mounted on the No. 29 node to measure the -z (verti-
cal) force. Three accelerometers are roved from node No.1 to node 
No.45 during the experiment to measure +z response.

The MIMO FRF test enables modal shakers on nodes No. 12 and 
No. 29. Burst random signal (60% burst) of 0.05 V RMS amplitude 
was used as an excitation signal. The frequency range of this test 
is set to 576 Hz, with a block size of 4096. No window is needed for 
the burst random excitation method as the user can tune the burst 
percentage to control the no output duration time to ensure that the 
response decays naturally and there is no leakage.

With the help of a Mode Indicator Function (MIF), the natural fre-
quencies can be labeled. By eliminating the right body modes at 
extremely low frequencies and insignificant modes at high frequen-
cies, modal modes were found between 50 and 350 Hz. A stability 
diagram generated based on the PTD method is shown in Figure 
3.3. A stability diagram generated based on the Poly-X method is 
also shown in Figure 3.4. A comparison between the two estimation 
methods is discussed in the conclusion.

Figure 3.2: Measurement tab displaying test data

Figure 3.3: Stability diagram using PTD estimator

Figure 3.4: Stability diagram using Poly-X estimator

4. Conclusion
The Poly-X, a poly-reference least-square method, is discussed and 
implemented. An experimental MIMO FRF test is carried out to ex-
hibit its advantages. The Poly-X estimator produces a much cleaner 
stability diagram which simplifies the process of choosing the stable 
system poles. The poly-reference frequency-domain based estima-
tor also works better in identifying lightly damped modes (Modes 1 
and 2) and closely spaced modes (Modes 3 and 4) as observed in 
the stability diagrams procured from the different estimation meth-
ods. The implemented Poly-X method was observed as being two 
times computationally faster than the PTD time domain estimator 
when utilizing the same frequency band and same order of curve-
fitting. These advantages make the Poly-X method more efficient 
and attractive to the end user.

References
[1] H. Van der Auweraer et al. “Application of a Fast-Stabilizing 
Frequency Do- main Parameter Estimation Method”. In: Journal 
of Dynamic Systems, Measurement and Control 123 (2001), pp.  
651–658.

[2] Bart Cauberghe et al. “The secret behind clear stabilization dia-
grams: the influence of the parameter constraint on the stability of 
the poles”. In: Proceedings of the 10th SEM international congress 
exposition on experimental and applied mechanics. 2004, pp.  7–10.

[3] Patrick Guillaume et al. “A poly-reference implementation of the 
least-squares complex frequency-domain estimator”. In: Proceed-
ings of International Modal Analysis Conference. Vol.  21. 2003, pp.  
183–192.

[4] Bart Peeters et al. “A new procedure for modal parameter estima-



PAGE 4 | CRYSTAL INSTRUMENTS

tion”. In: Sound and Vibration 38 (2004), pp.  24–29.

[5] Peter Verboven. “Frequency-domain system identification for 
modal analysis”. PhD thesis. 2004.

CRYSTAL INSTRUMENTS
2370 OWEN STREET
SANTA CLARA, CA 95054
UNITED STATES OF AMERICA

PHONE: +1 (408) 968 - 8880  |  FAX: +1 (408) 834 - 7818  |  WWW.CRYSTALINSTRUMENTS.COM  |  INFO@GO-CI.COM

© 2019 Crystal Instruments, All Rights Reserved. 03/2019

Notice: This document is for informational purposes only and does not set forth any warranty, expressed or implied, concerning any equipment, equipment feature, or 
service offered or to be offered by Crystal Instruments. Crystal Instruments reserves the right to make changes to this document at any time, without notice, and assumes 
no responsibility for its use. This informational document describes features that may not be currently available. Contact a Crystal Instruments sales representative for 
information on features and product availability. 


